文章编号:0253-2239(2009)09-2640-05

利用聚束透镜获得高功率密度软 X 射线源

陈定阳 许泽平 秦 义 宁家敏

(中国工程物理研究院核物理与化学研究所,四川 绵阳 621900)

摘要 研制了针对 Z-pinch强 X 射线辐射源的软 X 射线聚束透镜,利用西北核技术研究所"强光一号"加速器产生的钨丝阵高温等离子体辐射,对在高功率密度软 X 射线入射条件下的聚束透镜开展了实验。研究表明:由 2401 根 X 光导管组成的透镜,在输入软 X 射线功率密度达 1.0×10⁸ W/cm² 时,透镜的平均传输效率为 9.6%,在软 X 射线传输过程中等离子体溅射被导管内壁吸收,透镜后焦点处能获得洁净的软 X 射线源,平均功率密度达到 1.15×10⁹ W/cm²。

关键词 X射线光学; 软 X射线聚束透镜; X光导管; Z箍缩; 高功率密度软 X射线; 传输效率
 中图分类号 O434 **文献标识码** A **doi**: 10.3788/AOS20092909.2640

Obtaining High-Power-Density Soft X-ray Source by Using Lens

Chen Dingyang Xu Zeping Qin Yi Ning Jiamin

(Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Sichuan, Mianyang 621900, China)

Abstract We made soft X-ray lens and combined it with high-temperature plasma radiation which was produced on Qiang-Guang I facility. The transmission characters of lens were measured. It is shown that, for the lens manufactured of 2401 X-ray capillaries, when the power density of the incident soft X-ray is 1.0×10^8 W/cm², the average transmission efficiency of lens is 9.6%, and the power density 1.15×10^9 W/cm² of soft X-ray source without plasma fragment can be obtained at focal point.

Key words X-ray optics; soft X-ray lens; X-ray capillary; Z-pinch; high-power-density soft X-ray; transmission efficiency

1 引 言

随着高温等离子体物理研究工作的快速发展, 需要发展更高精度的具有时间、空间和能量分辨能 力的高温等离子体 X 射线诊断技术与设备, 6 eV~20 MeV能区需要各种能量的 X 射线源来标 定相应的 X 射线探测系统、仪器和探测元件,因此 世界各国都在积极建立各种实验室 X 射线源^[1]。X 射线管被普遍地用作软 X 射线源,但是它们的低功 率密度与低效率使其应用受到限制;旋转阳极 X 射 线源是实验室最大功率的恒定 X 射线源,日本理学 电机公司生产的 FR 型 X 射线产生器,其焦斑处最 大功率密度为 3.5×10⁶ W/cm²,但在软 X 射线能 区旋转阳极的转换效率较低(10⁻⁴);同步辐射源的 功率密度也较低,并且设备庞大昂贵,在一般实验室 中很难得到这种大型装置。利用强脉冲激光与固体 材料作用,或用 Z 箍缩放电来产生高温高密度等离 子体,可用作软 X 射线源,激光等离子体从电能到 X 射线的转换效率小于 1%,而 Z 箍缩等离子体的 能量转换效率可达到 15%~20%^[2],因此 Z 箍缩等 离子体辐射源有经济、高效的优点。

等离子体辐射源产生 X 射线的同时还产生电 子、带电离子、中性粒子等伴随物,为获得洁净的软 X 射线,可以用 X 射线聚束透镜^[3~7]与等离子体辐射源 组合来去除伴随物。X 射线聚束透镜是由大量不同 曲率的 X 光导管^[8~13]组合而成,它可以在大的立体 角内收集宽能带的软 X 射线并对其进行聚焦,伴随物 则不能通过弯曲的 X 光导管而被透镜吸收,因此透镜 的后焦点处能获得洁净的高功率密度软 X 射线。核

收稿日期: 2008-09-08; 收到修改稿日期: 2009-01-04

作者简介:陈定阳(1983—),男,硕士研究生,主要从事 Z-pinch 诊断方面的研究。E-mail: dingyangchen@sohu.com 导师简介:许泽平(1967—),男,研究员,主要从事 Z-pinch 诊断方面的研究。E-mail: xuzeping1967@163.com

物理与化学研究所研制的软 X 射线聚束透镜与激光 等离子体辐射源组合,输入软 X 射线功率密度为 1.66×10⁴ W/cm²,焦斑处获得的软 X 射线的平均功 率密度达到 1.3×10⁵ W/cm^{2[14]}。为了获得更高功率 密度的软 X 射线,我们根据 Z-pinch 等离子体辐射源 的特点并结合"强光一号"装置的参数研制了与其组 合的软 X 射线聚束透镜,在"强光一号"加速器上进行 了 10 发次钨(W)丝阵实验,对透镜的聚束参数进行 测量,在透镜的焦点处获得焦斑半径为 1 mm、功率密 度为 1.15×10⁹ W/cm² 的软 X 射线源。

2 软 X 射线聚束透镜的研制

研制的软 X 射线聚束透镜是针对西北核技术 研究所"强光一号"加速器的。"强光一号"是目前国 内开展 Z-pinch 研究电流最大的装置(约 1.5 MA), 在该装置上使用丝阵负载可以获得总能量 30 kJ,最 大功率 1 TW 的 X 射线输出,其辐射源可近似成线 状光源(约 20 mm),X 射线辐射的能量主要集中在 软 X 射线能区。由于靶室结构及透镜本身尺寸的 限制,设计的透镜入口端距靶心的距离为 200 mm。 透镜后焦距越小,从透镜出射的软 X 射线发散越 小,即焦斑尺寸越小,同时考虑 X 光导管的排列位 置,透镜后焦距的设计值为 50 mm。选用的 X 光导 管为由 DM308 型号玻璃材料 拉制的内直径 0.45 mm、外直径 0.60 mm 的 X 光导管。

透镜的空间结构设计要求是:组成透镜的每一 根 X 光导管入口端的延长线交于线光源上,出口端 的延长线交于后焦点。以导管长度、透镜层数为参 数,参考文献 X 射线在毛细导管中传输的模拟计算 方法^[15],对透镜进行数值模拟,结果表明:由 25 层 共 2401 根 X 光导管组成的中心长度为 410 mm 的 透镜,其后焦点处功率密度较高,对 X 射线的传输 效率也较好。以模拟结果为依据制作透镜,实物图 如图 1 所示。

图 1 软 X 射线聚束透镜实物图 Fig. 1 Soft X-ray lens

3 实验设计

对聚束透镜在高功率密度软 X 射线入射条件下 聚束参数的测量主要分为两部分来进行:1)对透镜焦 距及焦斑尺寸的测量;2)对透镜输出功率的测量。

3.1 焦距及焦斑尺寸的测量

透镜后焦距的设计值为 50 mm,为测量实际的 焦距及焦斑尺寸,把 X 光胶片放置在距透镜出口端 约 50 mm 处,微小地改变胶片与透镜出口端的距 离,拍摄 Z-pinch 等离子体源辐射的软 X 射线通过 透镜后在不同位置处的光斑。当光斑的面积最小 时,X 光胶片与透镜出口端的距离为透镜实际的后 焦距,光斑面积即为透镜的实际焦斑大小。焦距和 焦斑尺寸与制作工艺有关,制作工艺水平越高,焦距 越接近设计值,焦斑尺寸越小。

3.2 透镜后焦点位置功率的测量

对透镜后焦点位置功率测量的实验布局如图 2 所示。其中, L_1 为辐射源与透镜入口端的距离, $L_1 =$ 200 mm; L_2 为透镜的长度, $L_2 =$ 410 mm;f为透镜的 焦距; L_3 为透镜的后焦点与闪烁体中心的距离。

图 2 实验装置示意图

Fig. 2 Illustration of experimental setup

图 2 中的功率探测系统是由 ST401 闪烁体 (Φ30×0.1 mm)、GD40H 光电管、示波器和高压电 源组成。闪烁体与测量主管道成 45°,它将入射的 X 射线转换成峰值波长为 375 nm 可见光;光电管设 置在与主管道成 90°的测量管道中,光电管的光谱 响应范围为 300~650 nm,它将可见光转换成大电 流信号输出至示波器。闪烁体的转换时间为 2.8 ns,光电管的响应时间为 0.6~0.9 ns,它们组 成的探测器系统响应时间小于 3.3 ns,而"强光一 号"辐射的 X 射线半高宽为 20~30 ns,因此探测器 系统输出的电流信号基本能够反映等离子体软 X 射线辐射的功率随时间的变化过程^[16]。

因为探测器系统能测量的软 X 射线功率密度 阈值为 1.47×10⁵ W/cm²,只有功率密度小于此值, 系统才能线性输出^[16],而透镜后焦点位置软 X 射线 的功率密度远大于该阈值,所以实验采用间接测量法,即通过测量距透镜后焦点 L。位置软 X 射线辐射功率,推算透镜后焦点位置的软 X 射线功率。

实验中用软 X 射线功率仪系统^[16] 探测 Z-pinch 等离子体源辐射的软 X 射线功率,设光源辐射软 X 射线的功率为 P_0 ,由于光源的发光区长度(约 20 mm)远小于 L_1 ,所以计算聚束透镜入口端的软 X 射线功率密度 Ψ_m 时光源可近似为点光源

$$\psi_{\rm in} = \frac{P_0}{4\pi L_1^2},\tag{1}$$

从透镜入口端入射的软 X 射线功率为

$$P_{\rm in} = \psi_{\rm in}, S = \psi_{\rm in}, M \pi r_{\rm in}^2 = \frac{M r_{\rm in}^2}{4L_1^2} \cdot P_0,$$
 (2)

式中 S 为透镜的有效收光面积; M 为组成透镜的 X 光导管数; r_{in}为 X 光导管的内半径, r_{in}=0.225 mm。 从透镜出射的软 X 射线功率为

$$P_{\rm out} = \eta \frac{M r_{\rm in}^2}{4L_1^2} P_0,$$
 (3)

式中 η 为透镜的整体传输效率。透镜的后焦点可以 获得高功率密度的软 X 射线源。由于组成透镜的 不同层的 X 光导管传输效率不同,中心的 X 光导管 传输效率较高,外层的 X 光导管传输效率较低,所 以透镜焦点处发光情况是靠近主轴的软 X 射线束 的功率密度较高,远离主轴的软 X 射线束的功率密 度较低。为了准确计算透镜的焦点位置软 X 射线 的功率,利用数值仿真方法模拟了 Z-pinch 源辐射 的软 X 射线通过透镜在闪烁体位置(距透镜出口端 613 mm)的光强分布:参考文献 X 射线在毛细导管 中传输的模拟计算方法^[15],假定光源是理想的均匀 发光的线状光源,发光区长度为 20 mm,光源辐射 X 射线 能量 E = 1 keV,透镜 由 2401 根 内 直径 0.45 mm、外直径 0.60 mm 的 X 光导管组成,焦距 为 62 mm(测量到透镜的实际焦距),其它参数与实

图 3 闪烁体位置软 X 射线的光强分布 Fig. 3 Distribution of intensity in position of scintillator foil

验条件一致,模拟结果如图3所示。

设透镜焦点处的软 X 射线总光强为 *I*_{foc},闪烁 体探测的软 X 射线的总光强为 *I*_{sci},则示波器探测 的电压信号为

$$U = P_{\text{out}}k \frac{I_{\text{sci}}}{I_{\text{foc}}} = \eta k \frac{M r_{\text{in}}^2 I_{\text{sci}}}{4L_1^2 I_{\text{foc}}} P_0, \qquad (4)$$

式中 k 为测量装置的功率电压转换系数。由(4)式可计算出透镜的整体传输效率

$$\eta = \frac{4L_1^2 I_{\rm foc} U}{Mr_{\rm in}^2 I_{\rm sci} k P_0},\tag{5}$$

其中数值模拟结果为 $I_{\text{foc}}/I_{\text{sci}}=62.05$ 。

4 实验结果与分析

4.1 焦距及焦斑尺寸的测量结果

距透镜出口端不同位置的光斑分布如图 4 所示,其中,L 为 X 光胶片与透镜出口端的距离。由测量结果可得:在L=62 mm 处光斑面积最小,此处为透镜的后焦点,透镜的焦斑直径为 2 mm。

图 4 X 光胶片测量不同位置处光斑分布。(a)L=45.5 mm; (b)L=59 mm;(c)L=62 mm;(d)L=93 mm Fig. 4 Distribution of facula in different positions, (a)L=

45.5 mm; (b)L=59 mm; (c)L=62 mm; (d)L=93 mm

图 5 软X射线辐射波形(07307发次) Fig. 5 Waveforms of soft X-ray radiation(shot No. 07307)

4.2 透镜后焦点位置功率的测量结果

对功率的测量总共进行了 4 发次实验。以 07307 发次为例,对实验数据进行分析。图 5 为距 离透镜出口端 613 mm 位置软 X 射线辐射功率波 形,它反应了辐射功率与时间的关系。实验中软 X 射线功率仪系统探测到光源辐射的峰值功率为 0.49 TW,由(1)式可得入射到透镜入口端软 X 射 线功率密度为 9.75×10⁷ W/cm²;由图可知 U=27.85 V,代入(2)式、(3)式、(5)式可得:透镜的输 入软 X 射线功率为 3.72×10⁸ W,输出软 X 射线功 率为 3.62×10⁷ W,在峰值功率时刻透镜的传输效 率为 9.73%。实验获得透镜的焦斑半径为 1 mm, 则聚束软 X 射线光斑的平均功率密度为 1.15× 10⁹ W/cm²,是输入软 X 射线功率密度的 11.8 倍。

按照相同的方法计算不同发次钨丝阵实验中透 镜的输入功率密度及功率、输出功率、透镜的整体传 输效率、焦斑功率密度,结果如表1所示,其中测量 的标准不确定度为8.5%。

表1 透镜的聚焦参数

Tabla	1	Foous	paramotor	of	lone
Laple	1	FOCUS	parameter	OI	lens

shot No.	P_0/TW	$\psi_{\rm in}/(10^7{ m W/cm^2})$	$P_{\rm in}/(10^8{ m W})$	$P_{\rm out}/(10^7{ m W})$	η / $\%$	$\psi_{ m foc}/(10^9{ m W/cm^2})$
07306	0.49	9.75	3.72	3.28	8.81	1.04
07307	0.49	9.75	3.72	3.62	9.73	1.15
07308	0.51	1.01	3.86	4.77	12.35	1.52
07309	0.50	9.95	3.80	2.80	7.37	0.89
average	0.50	9.89	3.78	3.62	9.58	1.15

4.3 数值模拟结果

为验证实验结果,我们对 Z-pinch 等离子体源 辐射的软 X 射线经透镜出射后的光强分布进行数 值仿真,模拟方法和参数选择与 3.2节一致,模拟结 果如图 6 所示,它反映了距透镜出口端不同位置的 光斑分布及尺寸大小,其中,L 为平面与透镜出口端 的距离。

图 6 与图 4 进行比较,距透镜出口端相同位置, 数值模拟的光斑尺寸与胶片测量结果相比略微偏 大,这是因为实验中为屏蔽可见光,在 X 光胶片与 透镜的出口端之间放置了铜箔,功率密度低于一定

Fig. 6 Simulation of distribution of facula in different positions (a)L=45.5 mm, (b)L=59 mm, (c)L=62 mm, (d)L=93 mm

阈值的软 X 射线不能引起胶片的感光。数值模拟 的光斑中心处的形状与尺寸与测量结果基本一致。 结果表明:利用聚束透镜获得高功率密度软 X 射线 源的方法是可行的,实验结果与设计透镜时的预期 结果一致。

实验进行了 5 发次对焦距及焦斑尺寸的测量, 4 发次对功率的测量,以及 1 发次调试实验,共 10 发次。丝阵负载内爆辐射软 X 射线的同时,会产生 等离子体溅射、带电离子、电子和中性粒子等伴随 物,它们不能通过弯曲的 X 光导管而被透镜吸收, 透镜后焦点处获得的是较洁净的软 X 射线。分析 表 1 中的数据,在测量不确定度范围内,软 X 射线 聚束透镜的聚焦参数没有因为吸收伴随物而改变, 该类透镜可以持续性地工作在 Z-pinch 装置上来获 得高功率密度软 X 射线源。

5 结 论

针对"强光一号"Z-pinch 等离子体源,研制了与 其组合的软 X 射线聚束透镜,当输入透镜的软 X 射 线功率密度为 1.0×10⁸ W/cm² 时,距离透镜出口 端 62 mm 处获得的软 X 射线焦斑半径为 1 mm,平 均功率密度为 1.15×10⁹ W/cm²;丝阵负载内爆时 产生的等离子体溅射、带电离子、电子和中性粒子等 伴随物被弯曲的 X 光导管内壁吸收,由透镜聚束获 得的高功率密度软 X 射线是较洁净的;透镜在 Z 箍 缩装置上可以重复使用。利用聚束透镜与 Z-pinch 等离子体源组合为获得洁净高功率密度软 X 射线

29 卷

辐射源提供了一种可选技术途径。该成果为拓展 Z-pinch运用与领域有潜在前景。

参考文献

1 Sun J. W. The X-ray and VUV radiation sources and their metrology[M]. Beijing: National Defense Industry Press, 2001: 7~212

孙景文. X 射线与真空紫外辐射源及其计量技术[M]. 北京:国防工业出版社,2001:7~212

- 2 Hua X. S, Peng X. J, Li Z. Het al.. Physical research of fast Zpinch implosion for the W multi-wire array [J]. High Power Laser and Particle Beams, 2006, 18(9): 1475~1480 华欣生,彭先觉,李正宏等.快Z箍缩钨丝阵内爆物理研究[J]. 强激光与粒子束, 2006, 18(9): 1475~1480
- 3 Komakhov M. A, Komarov F. F. Multiple reflection from surface X-ray optics[R]. *Physics Reports*, 1990, 5: 289
- 4 Sun Tianxi, Ding Xunliang, Liu Zhiguo *et al.*. Experimental investigation of properties of polycapillary X-ray lens[J]. *Acta Optica Sinica*, 2005, **25**(10): 1436~1440

孙天希,丁训良,刘志国 等. 整体 X 光透镜性能实验研究[J]. 光学学报,2005,25(10):1436~1440

5 Le Zichun, Liang Jingqiu. Theory of the compound X-ray lenses for focusing high energy X-ray radiation[J]. Acta Optica Sinica, 2004, 24(4): 572~576

乐孜纯,梁静秋.高能 X 射线聚焦组合透镜的理论研究[J]. 光 学学报,2004,24(4):572~576

6 Sun Tianxi, Xie Yaning, Liu Zhiguo et al.. Application of monolithic polycapillary half focusing X-ray lens in focusing the synchrotron radiation [J]. Chinese J. Lasers, 2006, 33 (4): 456~460

孙天希,谢亚宁,刘志国等.利用整体毛细管 X 光半会聚透镜 会聚同步辐射[J].中国激光,2006,**33**(4):456~460

- 7 Sun Tianxi, Xu Guangyu, Liu Zhiguo *et al.*. Application of monolithic capillary X-ray lens in analysis of single aerosol particles[J]. Acta Optica Sinica, 2008, **28**(9): 1833~1836 孙天希, 徐光瑜, 刘志国 等. 整体毛细管 X 光透镜在大气颗粒 物单颗粒分析中的应用[J]. 光学学报, 2008, **28**(9): 1833~1836
- 8 Li Deyao, Liang Zhujian, Ding Xunliang et al.. Transmission characteristics of X-ray guiding tubes [J]. Acta Optica Sinica,

2000, **20**(6): 735~738

李德尧,梁竹健,丁训良 等. X 光导管传输性能实验研究[J]. 光学学报,2000,**20**(6):735~738

- 9 Chen Dingyang, Xu Zeping, Qin Yi et al.. Transmission efficiency of high power density soft X-ray through capillary[J]. *High Power Laser and Particle Beams*, 2008, **20**(4): 617~620 陈定阳, 许泽平, 秦 义等. 高功率密度软 X 射线在 X 光导管 中传输效率测量[J]. 强激光与粒子束, 2008, **20**(4): 617~620
- 10 Niu S. L, Peng Y, Wang J. G et al.. Simulation of X-ray transmission through mono-capillaries by monte-carlo method[J]. High Power Laser and Particle Beams, 2004, 16 (12): 1513~1517

牛胜利,彭 玉,王建国等.X光导管传输特性的蒙特卡罗模拟
 [J].强激光与粒子束,2004,16(12):1513~1517

- 11 Hector Jorge Sanchez. Energy dependence of X-ray capillary performance[J]. Nuclear Instruments and Methods in Physics Research B, 1998, 145: 567~572
- 12 S. B. Dabagov, A. Marcelli, G. Cappuccio et al.. On propagation of X-rays in capillary channels [J]. Nuclear Instruments and Methods in Physics Research B, 2002, 187: 169~177
- 13 S. V. Kukhlevsky, F. Flora, A. Marinai et al. Diffraction of X-ray beams in capillary waveguides[J]. Nuclear Instruments and Methods in Physics Research B, 2000, 168: 276~282
- 14 Qin Y, Xu Z. P, Li Z. H et al.. Transmission characteristics of soft X-ray through capillary[J]. High Power Laser and Particle Beams, 2006, 18(6): 913~916
 秦 义,许泽平,李正宏等.软X射线光导纤维传输特性[J]. 强激光与粒子束, 2006, 18(6): 913~916
- 15 Wu P. J. Li Y. D. Lin X. Y et al.. Simulation of X-ray transmission through a capillary[J]. Acta Physica Sinica, 2005, 54(10): 4478~4482
 邬鹏举,李玉德,林晓燕等. X射线在毛细导管中传输的模拟计算[J]. 物理学报, 2005, 54(10): 4478~4482
- 16 Ning J. M, Jiang S. L, Xu R. K et al.. Linear luminescence for thin plastic scintillator under intense soft X-ray irradiation[J]. High Power Laser and Particle Beams, 2006, 18 (7): 1215~1218

宁家敏,蒋世伦,徐荣昆等.强脉冲软X光辐照薄塑料闪烁体 发光特性研究[J].强激光与粒子束,2006,**18**(7):1215~1218